
Identifying WLAN Attacks Using

Aircrack-ng

New Mexico Supercomputing Challenge

Final Report

April 8th, 2020

Team 14

Capital High School

Team Members:

 Hansel Chavez

 Jonathan Garcia

 Lourdes Armenta Cazares

 Isel Aragon

 Erika Delgadillo

Teacher: Irina Cislaru

Project Mentor: Jason Schaefer

1

Table of contents:

Executive Summary

.........

.........................

3

Introduction

.........

.........................

4

Methods

.........

.........................

4

 Code

.........

.........................

5

Results

.........

.........................

8

Conclusion

.........

.........................

9

Achievement

.........

.........................

8

Acknowledgement

.........

........................

10

Resources

.........

........................

10

2

Executive Summary:

WLAN also known as Wireless Local Area Network, has become very popular

starting in the early 2000s when the internet became more prevalent. It was first

introduced on September 21, 1998. WLAN is sometimes confused as WIFI, when WIFI

is actually an underlying technology of wireless local area networks. WIFI uses radio

signals to transmit data from one device to another while WLAN is a method for two or

more devices that use high-frequency radio waves and allows users to move around the

coverage area, often a home or small office while maintaining a network connection.

WLAN is at the point where hackers can easily get the network's password; with

that password they could easily retrieve information from these small businesses and

homes with little security. The business and home, have a mindset of “we won’t get

3

hacked”, in reality they are at risk of being a victim of a hacker without the proper

security measures.

Aircrack-ng is one of the most popular WLAN password cracking tools used in

hacking. Where with just a few simple lines of codes, you will be able to get the

networks password.Though not only that, the tool can also identify devices connected to

the network, disconnect a device from network, testing networks vulnerability in

injections, and much more. [1]

Introduction:

In the world of technology, codes are not completely sealed because there are

cracks in between that are big enough to let ‘short cuts’ get through and break in the

system. These ‘short cuts’ each have a different way of functioning and have different

roots, in other words these ‘roots’ are network software that are used for hacking. Yet,

not all softwares is used for bad (hacking). Most of these softwares are used for

protecting us against these hackers. With the easy set up of creating your own WLAN,

we would like to manage the security of the device, if done wrong, we are at risk of

hacker attacks [2]. This vulnerability can be seen within small businesses and homes.

There are many ways that hackers can attack public wifi among them

man-in-the-middle, Evil twin, passive sniffing, cowpath and even Aircrack-Ng and just as

Aircrack-Ng is used to retrieve said sensitive information with simple commands within

4

the command prompt. Aircrack-ng can also be used to undo said things. With the use of

Aircrack-ng (a set of hacking tools to identify and test, the vulnerability of the network),

we can detect all devices found within our network. By using this program, we can

implement the commands on a BASH script, implementing those commands within our

terminal-based Python program.

Methods:

Our program is to identify and stop the connection of outside devices found

within homes or business WLAN using Aircrack-ng. Running the program, will record

the devices found within the WLAN every 5 - 15 seconds in a .csv file. If the program

detects an outside device, it will disconnect the device from the WLAN and will notify the

user with details of the device. If a user identifies the device as trusted, it will be added

to a list of devices found within the program.

When running the program, we can easily leave the computer running for a

period of time. In that time, we connect a seperate device to the network where the

program should detect the device, disconnecting it, and setting aside the information

until the user stops the program. When we stop the program, the program can easily

present the device(s) it detected, informing the user of the device's detail (MAC address

(the device code), location last found, etc.) and setting the option of adding the device to

a list of trusted devices.

Code:

5

We are using os and csv modules in our program. os helps us run commands

from the command prompt within our python program; csv will help us read the .csv

files when looping through our program.

We enforce the user to be rooted (the user name or account that by default has

access to all commands and files on a Linux or other Unix-like operating system); when

the user is rooted, it will go through a diagnostic before entering in the terminal prompt.

It will first check if the device has installed Aircrack-ng:

if os.geteuid() == 0:

 # Checking if aircrack is available
 print("Checking if 'aircrack-ng' is installed...")

 find_aircrack = os.popen("dpkg -l | grep aircrack-ng").read()

 if find_aircrack == "":

 print("Unable to find the program : installing it\n")

 os.popen("apt-get -y install aircrack-ng")

 else:

 print("Aircrack-ng was found in your computer!\n")

else:

 print("You must be in root to run this script...")

 Then, it will prompt the user for the internet connection type, in this case it is

wlp2s0 (my wifi interface), others might be something like en1 (the ethernet interface)

and the users prefered .txt file for their list of trusted devices. Now the program will be

forever looping the connection until the user cancels the loop or when the program

detects the device, this is where we use BASH script:

 print("Enter internet connection type (i, g; wlp2s0)")

 internet = input(" > ")

 print(“Enter network BSSID”)

 bssid = input(" > ")

 print("Starting connection ; 'airodump-ng'...")

6

 while True:

 usr_input = input("\nThe program make your device go offline until you exit

out the program. Will you still like to continue? [y / n] > ")

 if usr_input.lower() == "y":

 print("Disconnecting device & listing connected devices in network...")

 print("Alright, good-night!")

 os.system(f"sh grab_devices.sh {internet} {bssid}")

 break

 elif usr_input.lower() == "n":

 print("\nProceeding to exit the program...")

 exit()

 else:

 print("\nInvalid input")

INTERFACE=$1

BSSID=$2

echo “Starting interface...”

airmon-ng start ${INTERFACE}

while :

do

 date +"%T"; echo “] Iterating...”

 timeout 60 airodump-ng --bssid ${BSSID} -w airodump_info/detections/.

${INTERFACE}mon

 tail --line 2 airodump_info/detections/.-01.csv | cut -d ',' -f 1-1 >> BSSID.txt

 sleep 3m

done

When the user stops or the program detects an untrusted device, the computer

will retrieve the .csv file found in the folder, and will run through a loop going through

each line of text in the .txt files until it detects a threat or not, informing the user.

When all that has gone through, we now see a terminal prompt with netDet>,

where it consists of two commands trusted and detected. trusted will list the

devices you have trusted; detected will print out the device’s information the program

has found within this forever loop

7

 while True:

 usr_input = input("netDet> ") trusted

 if usr_input == "trusted":

 f = open(file_inp, "r")

 for i in f:

 print(i)

 elif usr_input == "detection":

 print("Here are the detected untrusted device(s):")

 f = open("airodump_info/detections", "r")

 for i in f:

 print(i)

 elif usr_input == "q" or usr_input == "exit":

 os.popen(f"airmon-ng stop {internet}mon")

 print("Connected back to the internet")

 print("You might need to reboot the computer to go back to the

network\n")

 print("Have a nice day! o/")

 break

 elif usr_input == "help":

 print("""

trusted It will list all the trusted devices from text file

 you have entered.

detection Will compare the list you've given over 'aircrack-ng'

 and will return the results whether or not it detected

 an untrusted device. (Still in progress...)

q / exit Exit out the program.

 """)

 else:

 print("Command undefined, enter help for commands")

When the user exits out the program, they are able to connect back to the

internet.

Results:

We are able to identify, and stop the connection of the device when running the

program. And we are able to successfully grab information from the untrusted device,

but do keep in mind, we can only retrieve the device's MAC address. However, we are

unable to identify devices that are connected to a VPN (sending the device to another

8

network), which hides the device from the list of connected networks, resulting in not

finding the device's detail. Unless we crack a specific layer, but with the risk of

disrupting the WLAN network.

Conclusion:

From all the software networks that could have been chosen Aircrack-ng is the

best candidate for this assessment because of its capability to abbreviate the time it

takes to function and give a response. But keep in mind that this will not protect you

from a device connected to a VPN. On our next version of this, we will try to retrieve the

device's info, whether or not it is in VPN or not. We will also try to retrieve more

information from the untrusted devices if possible, such as getting the device's last

logged location, the computer username, etc.

This program has opened the possibilities of implementing other hacking tools

within our program, such as nmap (a network vulnerability scanning tool) and netcat (a

utility used for reading from and writing to network connections), protecting our network

even better.

Achievements:

We have fully learned the use of Aircrack-ng and its tools not only to attack

networks, but to protect ourselves within the situation of being attacked. This has also

improved our knowledge of network vulnerability, disconnecting connections within our

9

network and much more. Not to mention, that this has given us an opportunity to realize

that our information can be exposed to anyone who is willing to hack the system and

that anyone is at risk of being a victim of their information being exposed. It has also

made us realize that any software with the capacity is dangerous and powerful enough

to pass barriers that should not be crossed. This has given us the entrance to the many

tools found in the hacking community, such as nmap and netcat. Learning them, and

possibly adding them to our program for our next program.

Acknowledgment:

We would like to acknowledge Jason Scheafer from Schaefer Consulting for the

confusing rollercoaster of Aircrack-ng, understanding each detail about what is

displaying in our terminal. We would also like to thank Hansel’s household for using

their network on experimenting and to run our program.

Resources:

[1] https://www.aircrack-ng.org/doku.php

[2] Vishal Kumkar, et al. “Vulnerabilities of Wireless Security protocols (WEP and WPA2)”, International

Journal of Advanced Research in Computer Engineering & Technology, 2, April 2012,

https://dl.irstu.com/wp-content/uploads/Download/Education/Book/Network/Network%20Security/WEP-W

PA-Article/Vulnerabilities%20of%20Wireless%20Security%20protocols.pdf

10

https://www.aircrack-ng.org/doku.php
https://dl.irstu.com/wp-content/uploads/Download/Education/Book/Network/Network%20Security/WEP-WPA-Article/Vulnerabilities%20of%20Wireless%20Security%20protocols.pdf
https://dl.irstu.com/wp-content/uploads/Download/Education/Book/Network/Network%20Security/WEP-WPA-Article/Vulnerabilities%20of%20Wireless%20Security%20protocols.pdf

